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In the first part of this paped(Comput. Physl37, 1, 1997), continuous artificial
boundary conditions for the linearized compressible Navier—Stokes equations were
proposed which were valid for small viscosities, high time frequencies, and long space
wavelengths. In the present work, a new hierarchy of artificial boundary conditions
is derived from the so-called “discrete” approach, which consists in working directly
on the discretized equations, under the assumption of low time frequencies instead
of small viscosities. The discrete artificial boundary conditions are implemented
in 1D and 2D model problems and they compare quite well with the continuous
artificial boundary conditions. Being self-sufficient by construction, they can be
used as numerical boundary conditions and be coupled to schemes having arbitrary
stencils. (© 1998 Academic Press

INTRODUCTION

In order to compute in a bounded region a flow modeled by a problem formulatec
an infinite domain, one often introduces an artificial boundagnd tries to write on the
domain®2 bounded byl™ an initial boundary value problem whose solution is as close
possible to the solution of the original problem. When the solution of the mixed prob
on 2 coincides with the restriction of the solution of the Cauchy problem, the bouridar
is said to beransparent

In general, the associated boundary condition, callettéimsparent boundary condition
is integral intime and space on the boundary and is usually replaced by local approxima
i.e., differential in time and space: thetificial boundary conditions
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In the so-called “linear treatment,” the solution outside the artificial boundary is assun
to be a perturbation of a smooth steady state (often constant) about which the equat
are linearized. The derivation and the analysis of the artificial boundary conditions is tt
performed on the linear equations.

The compressible Navier—Stokes equations belong to the classoofipletely parabolic
equationsLaurence Halpern has proposeded in [3] a general method for deriving artific
boundary conditions for incompletely parabolic perturbations of hyperbolic systems, us
the Fourier and Laplace transforms as essential tools after the equations have been line
about a constant state. This method has been applied by the author to the compres
Navier—Stokes equations to obtain high order artificial boundary conditions, valid un
the assumptions of small viscosities, high time frequencies, and long space wavelen
[5, 6].

There is another way of addressing the problem of the artificial boundary conditio
Introduced for the wave equations by Engquist and Majda [14] and also by Halpern |
it consists in working directly on the discretized equations. This “discrete” approach t
been successfully applied by the author in [5] to the compressible Navier—Stokes equat
discretized by the explicit first order upwind scheme. The asymptotic expansions w
respect to the viscosity are replaced by developments assuming low time frequencies. C
approaches for artificial boundary conditions have been proposed in Refs. [10-12]. Arev
on the subject can be found in [13].

This article, which is the continuation of [6], presents the main results of the work
[5], where the interested reader will find more details. In Section 1, the discrete transpa
boundary condition for the negative half-space0 is derived from the discrete transmis-
sion boundary conditions using a method quite similar to that employed in the continu
approach [6]. As in the continuous case, the discrete transparent boundary conditic
integral in time and space on the boundary. In Section 2, the generalized eigenvalues
eigenvectors involved in the expression of the discrete transparent boundary conditior
approximated by asymptotic expansions valid for low time frequencies and long sp
wavelengths. In Section 3, the results of Section 2 are used to build a hierarchy of disc
artificial boundary conditions which are local in time and space. In Section 4, 1D and .
numerical results are presented and, in particular, the discrete artificial boundary condit
are compared to the continuous ones [6]. Finally, in Section 5, higher order discrete artifi
boundary conditions are proposed.

Unlike the continuous artificial boundary conditions, the discrete artificial bounda
conditions are self-sufficient: their number is always equal to the number of unknow
Moreover, they can be used as numerical boundary conditions in the case where the
tinuous artificial boundary conditions need to be completed. Also, they can be couplet
schemes with arbitrary stencils since they are based on the definition of approximate va
of the discrete solution outside the computational domain.

1. THE TRANSPARENT BOUNDARY CONDITION
FOR THE NEGATIVE HALF-SPACE

Let (u; j)i jez be a family of vectors belonging ®*. We will denote(g; j)i<o,jez as the
family (Ui j)i<o,jez and(di j)i=o,jez the sequencel; j)i>o, jez-
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1.1. The Transmission Boundary Conditions

Let (vi j)i jez be an element O(R4)Z2. It can be shown easily thaui“,j)neN,i,jEZ is
solution of the discrete Cauchy problem,

uptt = ZAaﬁu,+aJ+ﬁ vneN,V(,|j)ez?

w1 (1.1)
Uio,j=vi,j V@, j)eZ?
if and only if (g )nem.i<0,jez @nd (A" Dnen.iz0,jez SOlvVe
+1 A .
o aﬂz_:_lAaﬁg.wH,s VneN,Vi<—-1VjeZ 12
o’ = v, Vi<0,VjeZ
and
+1 ) .
d’] aﬁZ_lAaﬁdleﬁ VneN,Vi>1VjeZ 1.3)
d_O_:vi,j ViEO,VjGZ

1]

with the transmission boundary conditions

1 0
g(r)Hj-l _ Z ( Z Aa.ﬁgg,j+,8 + Al.ﬂdEjJrﬂ) YneN,VjeZ (2.4)

p=—1 \a=—1

1.2. The Solution in the Positive Half-Space

The 2D linearized compressible Navier—Stokes equations have been presented in [¢
we use here the same notations. It is well known that the first order explicit upwind sche
which is first-order consistent in both space and time, approaches the equation

U _ p0d a2 pay  AX X AD|
at aX ay 2 8x2
4 (vpe2 4 &Y |A<2>| et pas U (1.6)
aXay '

atfirst order intime and second order in space. In other words, Eq. (1.6) is the PDE equiv
to the first order explicit upwind scheme at first order in time and second order in space
semi-discretization with respect tandx, we obtain

ul s .
n+l Z L, n (1 7)

a=-1
where the differential operators inL, are given by

AX At d
1 1,1 1 1,2
Lg=— A<>+A 2(UP< = yA<)|>—u—P< )

1.
2AX AX dy (1.8)
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At AX d

Lo=1—2—(vP®Y + ——|AD]) + AtA® —

0 e ( S AY]) 4 ara

Ay d?
(2,2) 2) _ ’
+At<vP +—=|A |>F_I+LO (1.9)
At At At d

Ly = —A® pdD AD y—pd2 = 1.10
YN +Ax < + 2 | ! AX dy ( )

The initial valueu® is assumed to have compact support in the negative half-spafe
and we consider the problem

di(y) = Z L,d".(y) VneN,Vi>1 VyeR (1.11)
a=-—1

dg (y) = gn(y) VneN,VyeR (1.12)

d(y) =0 VieN,VyeR (1.13)

with (gn)nen belonging tof[L*(R)] ™.
The scheme defined by (1.11) can be viewed as acting on continuous functions of t
taking their values in the Hilbert spat&N; [L2(R)]*) defined by

+00
I2(N; [LPR)]*) = {(di) e {[L2®IYY Z |di Loy < +oo} :
=0 (1.14)

1
d(y.t+ A = > Labia(y. ).

a=-—1
Denoting&i(n, S) as the Fourier—Laplace transformafy, t) at pointsn ands=o +it,
with s> 0, the relation (1.11) becomes
Coamdi1(0,9) + (Lot — 1) (0, 9) + Lidira(n. ) =0, (1.15)
The symbolsf_\l(n), [\’o(n), andf](n) of the differential operators_4, L, andL; are
given by

At

— At AX At
L) = — AD PAD 4 22 AD|) — y——PBAjipAy  (1.16
1(n) 2AX + Axz\” + 2 A7 1)AxAy nAy (1.16)

_2At AX At .
Lot = N ( PED 4 —2 |A<1>}) + —AyA(Z)InAy
At @2 @
+A—y2 vP + yA | ) (inAy)? (1.17)

At VAt
AL o pa AD ———P®2ipA 1.18
Li(n) = RN ( +2} )+ Axayl Ay, (118)
wheree =z — 1 andz = €3 = e# Mg ™AL,
According to [4], the general solutionliA(N; [L?(R)]*) of the difference equation (1.15)
reads

d9= > Pii,n09pn9], (1.19)

i/lpjl<1
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where thep; (1, s) are the roots withp; (, s)| < 1 of the algebraic equation of degree 8
det(L_1(mp " + Lo + Lamp —el) =0 (1.20)

and where thé; (i, n, s) are polynomials im with coefficients inC*, the degree oP; being
one less than the multiplicity of;.

ProPosITION1. For each complex number z witla] > 1, n(2) > 0 exists such that
Y |n| < n(2), EQ.(1.20) admits four roots withp| < 1, the four remaining verifyingp| > 1.

Proof. See [5].

Let us now consider the following generalized eigenvalue problem(find) € C x C*
solving

1
( > Lamp® - z|> ® =0. (1.21)
a=-—1

For (p, @) solution of (1.21),0 and® will be respectively called generalized eigenvalue
and ageneralized eigenvectdrelated to the generalized eigenvapje We have the

THEOREM 1. We assume that* O exists such that for each complex number z wit
|z| > 1, verifying|z — 1| <r and for each real numbey with |n| < n(z2) (see Proposition
1), the generalized eigenvectod, j =1, ..., 4associated to the generalized eigenvalue
o with |p| < 1 are linearly independent.

Then the solution in #(N; [L?(R)]*) of the problem(1.11)—(1.13) reads in terms of
variablesn and s

4
d(m,9 =Y 2jm9pin, 9]0 (9, (1.22)
j=1

where (pj, ®1) are solutions of Eq(1.21), the coefficients.; being determined by the
boundary conditiong1.12).

Proof. Following (1.19), the set of the solutions if(N; [L2(R)]*) of the difference
equation (1.15) is a four dimensional vector space. hej =1, ..., 4, being linearly
independant, the elementary solutiojm)i ®i,j=1,...,4, arealso linearly independant
thus forming a basis of that space.

1.3. The Transparent Boundary Condition

The coefficients.; in the above theorem solve the fourth order linear system

4
> a@l =4(.9). (1.23)

=1

With M the 4x 4 matrix defined byMj, = d>'j‘ andN = M~lits inverse, they are given by
k= Yjer Nik Gk

Let g5(y) be the projection of familygg ;) on the set of continuous functions, linear
in each segmentyf, y;+1]. If we choosegn(y) =gp(y), the transmission condition (1.4)
leads to:



156 LOIC TOURRETTE

THEOREM2. The transparent boundary condition atiO for the negative half-space
is

1 0
N+l _ in(y;+BAY) oo+
%= > { D Aupl it A /Rze'”(y' paV gt

p=—1 La=-1

4
x [Z Njk (Go)i(p}) @]

j k=1

n,o0+it) dndr}. (1.24)

2. GENERALIZED EIGENVALUES AND EIGENVECTORS

As in the continuous case, the generalized eigenvalues and eigenvectors defined by (
are non-rational functions of variableandn and the transparent boundary condition (1.24
is thus integral with respect toandy. In order to obtain boundary conditions which are
local in time and space, we will develop the generalized eigenvalues and eigenvecto
first order with respect to the parametees z — 1 andn* = nAy/e assumed small.

2.1. General Considerations

We will not make any approximation with respect to the viscositgcause the quantities
VAt/AX?, vAt/AY?, andvAt/(AXAy) may be big even i <« 1 and we will work with
the characteristic variablesof matrix A®. They are defined by = P®"u and solve the
equation

Ew = A(l)iw +A(2)iw + vB(l'l)a—zw + vB(Z‘Z)a—zw + 2vB(1‘2)8—2w (2.1)
ot X ay ax2 ay? IXay '

with

-V, -1/2 0 0
-c? -\, 0 CcC?

A® — _ 2.2
0 0 -V, 0 (2:2)

0 12 0 -V,

2, r-1 1 2 r-1
3t Zmr 0 2Pr 3 2Pr
0 1 0 0
1y _
B = yo1 1 y-1 (2.3)
y—- 0 1 _Y—-
Pr Pr Pr
2 vl 1 2, v-1
37 2Pr 0 7pr 3T 2pr
1, r-1 1 1 y-1
2t e 0 2Pr 2 2Pr
0 &0 0
22 _ 3
B = y-1 1 yo1 (2.4)
y—= 0 1 _r—-
Pr Pr Pr
1 -1 1 1, r-1
2=2m 0 —3m 27T 7w



COMPRESSIBLE NAVIER-STOKES EQUATIONS 157

1
0 & 00
11]C 0 O0C
B1l2 _ = 2.5
6/]0 0 0 O (2:5)
1
0 3 00
3Vl + M) 22 0 3(IVal — My)
Cmp M> 0 —Cmp
|A®| = — (2.6)
0 0 |V 0
3(Val =Mz) =22 0 3(IVa| + My)
mp = sgnVz) min(|Vz|,C), Mz = max(Va|, C). 2.7)

We choose the notations

p = poo -+ inpor+ ep10+ (1) poz + inep11 + e2p20+ O(e%) + O(1°),  (2.8)

where we have introduced the non-dimensional variapenAy = en*. The solutions
(p, @) of the generalized eigenvalue problem (1.21) vesfl(p, ¢, ) ® = 0 with

— —00 ,__—01 /700 __/701 __2/702 2/\00 . _—~01
M(p,e,m)=L1 +ink1 +p(Ly +inky +(n?Ly —el)+p*(La +inls )

(2.9)

and
0= 2L (a0 am)) ¢ B‘l I L L IR
- 2AX AXAY
[ _At A w) - 2vAt 2B gay M= A @
0 Ax 0 Ay
0 (2.11)
L. @ B(Z 2)
0 2Ay |‘/4 | AyZ
—00 At VAt —01 VAt
Li =-— (AP +|AY]) + = B®Y = B2, 2.12
! 2Ax( +[A%]) + AX? ’ AXAY (2.12)
Injecting the asymptotic expansion (2.8) in the expression of mattjxwve obtain
M = Moo+ inMor+ eMao+ (im)* Moz + ine M1+ e Mo+ O(e®) + O(17%)
(2.13)
with
—00 —~00 —~00
Moo= L_1 +pooLy + pdoL1 (2.14)
_—— 01 /\/01 2 —01 /\/00 —00
Mor=L_1 +pooky +pgols +por(Ly +2p00L1 ) (2.15)

—00 —00
Maio = p1o(Ly + 2000L1 ) — pool



158 LOIC TOURRETTE

—00 00 5 00 —o1 01 —02

Moz = po2(Ly +2p00L1 ) +pGL1 +poa(Lo +2000L1 ) + poolf
00 00 —o01 01 —00

Mo =pua(Ly 4+ 2pool1 ) +p10(ly +2000L1 ) + 2p01p10L1 — poal
00 00 00

Moo= p20o(Ly 4+ 2p00l1 ) + oL — prol.

(2.16)
Matrix Moo can easily be put under the form

Moo = (1— poo)[Do + (1 — poo)(D1 + vB)] (2.17)
with

— — At — At — — At
Oll:(V1+C)H’ 012:013:V1§, (14=(V1—C)R (2.18)

of = max0, o), o =max0, —aj), i=1,...,4 (2.19)
_ VAt
N — 2.20
V= (2.20)
D_; = diage;, a, oz;, o)), Do = diag(ay, oz, a3, ag), 2.21)
Dy =diagle, a5, a3, 0;), B =B®D

and we see that the algebraic equation of degree @\dgf) =0 admits the quadruple
root pgo=1. We will thus distinguish the generalized eigenvalues whose limit is 1 :
(e, n*) = (0, 0) from the others. In the sequel, they will be named respectively “generaliz
eigenvalues of the first kind” and “generalized eigenvalues of the second kind.”

2.2. Generalized Eigenvalues and Eigenvectors of the First Kind
For the generalized eigenvalues of the first kind, the malfigy vanishes and we have
M = e{ Myo+in* Mor+eMoo+in*e M1+ (in*) e Moo} + O(3) + O (™). (2.22)

010, Po1, @ndpyg are given respectively by equations

detMyp) =0 (2.23)
det(Msg) - Mo1 =0 (2.24)
det(Mlo) - Mo =0. (2.25)

The associated generalized eigenvectors are expanded under the form
® = Dog + i1 Po1 + £ P10+ O(e?) + O(*?) (2.26)
and the termbgg, ®g1, andd,g are determined by solving the linear systems

M1o®Poo=0 (2.27)
Mio®o1 = —Mop1Poo (2.28)

and

Mio®10 = —M20Poo0. (2.29)
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We finally obtain

FVeAyAy) 1

1 1 _
oi =1+ e+ |14+ —(Bj + o) |e? + O@® + 0(n*)
(2.30)
1 0 _ _0 B
0 ev | Ba1/(1 — a2) LA =C(V+0O) 2 2
ol = + — +in*— + O(e%) + O(n*
0 o1 Bgl/(()[]_ —O[3) 1 Ay 0 ( ) (77 )
0 Ba1/ (a1 — aa4) 0
(2.31)
Vi
0 2¢C
1 . LAt 0
o2 = 0) +60+i n*A—y o |+ 0 + O(n*?) (2.32)
0 v
2¢C
0 B Bis/ (a3 — a1)
o= | | + & | Bes/(@s—2) | L ipe04 0@e?) + 002 (2.33)
1 o3 0
0 Bas/ (a3 — a4)
0 Bia/ (a4 — a1) o0
0 ev | Baa/(as — a2) LA -C(VL—-0O) 2 2
ot = — *— o oM
0 +Ot4 Bss/ (g — a3) i Ay 0 +0E)+0m™
1 0 0

(2.34)

and we will only consider thep;, ®') such thaty; > 0 for which it is shown in [5] that
11— (1/ai)e| < 1.

2.3. Generalized Eigenvalues and Eigenvectors of the Second Kind

poo is a root of the algebraic equation of degree 4Bgtf (1 — pgo)(D1+vB)] =0,
which admits the obvious rogigo=1 + a2/(v + «; ), andpyg is given by de{ M) -
./\/llo =0.

If we setd = dgg + e P19 + O(e?) + O(n), the vectorsbgy and &1 are respectively
given by Moo®oo =0 andMpe®10 = —M10Poo and we obtain

o= <1+ %) <1+ o D1t Ast Ag ) + 06D+ 00D (2.35)

Xi a1A1 + a3Az + 0gAy
o 1
04 = <1+ _*2 _) <1+8—) + 02 + O(n*d). (2.36)
vV +a, [0%)

X1, X2, andxs denote the roots of the algebraic equation of degree 3 with real coefficie

xP+ayx’+ax+a=0 (2.37)
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a=—(2+
2= 7\37 2Pr T

4 — 1 2+y—1+a1’ l+a§
1 3" 2pr " v )J\pPr" v 2PR

y—1 o\ 1 1 a3\ 1 2 y—-1 a7\ 1
- — e - - pp— I 2.38
) ( + v 3+ 2Pr + v J o ( )

os

(
)% ) - 3)]
LEeED e

- Olloia4{(|:]’-r+ af) (i * VZ_Pr1>2_ (2 * y2_Pr1 * aé)
G nes) e

andA1, Az, andAy4 are defined by

A1 = {oz + (1 — poo)[VBaz + a3 1} {aa + (1 — poo)[VBas + a5 1} — (1 — po0)*v?BasBaa
(2.41)

Az = {as+ (1 — poo)[VBaa+ oz [Hes + (1 — poo)[VB11 + a1 1} — (1 — poo)?v2B1aBas
(2.42)

Agq = {1+ (1 — poo)[VBu1 + a7 ez + (L — poo)[VBas + az ]} — (1 — po0)*v?Ba1Bis.
(2.43)

For the associated generalized eigenvectors, we have

4 1 2 y—1
szm+ (5= 2m) (7 — oaxi)
o' = 1 °
- Y= 4 o
(0 =3 =)
. . . .
(5+ % —onxi) (s — 5 = 3) + 7 (231 — )
(y = 1)/Pnby+(2/3— ((y — 1)/2Pp)bs
A
b,
ar+ (1= poo)(v +a5) +0(e?)+ 01", i=123

+¢&
0

((y =1)/Pnby — (2/3+ (y=1)/2Pn + ey /v — a1 xi)bs
A
(2.44)
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0
o4 = é + &0+ O(?) + O(n*?) (2.45)

0

with
-1 4

= yPr {0614-(1 poo)(—V‘FOfl)} (2.46)
b= 1 (pool — p10D0) Poo. (2.47)

— Poo

Fori < 3, we usep; wheny; < 0 whereagy, is kept in the case, < 0.

2.4. Interpretation of the Assumptions Underlying the Asymptotic Expansions

Taking the Fourier—Laplace transform of Eq. (1.11) is equivalent to looking for solutic
of the form

di(y,t) = et a (n, 0 +i1) (2.48)

which have a sinusoidal behaviour in time and space, with respective p@ri@c% and

A= |2_r7zT| We choose atime steft and a space stefy. Only those waves for which > At,

or equivalently|t|At « 27, are well seen by the time discretization. If we consider th:
€72t _ 1 js equivalent td T At ast tends to 0, we recover the assumptjeh 1 small
behind the previous asymptotic expansions.

Moreover, the phase velocit, of the sinusoidal plane waey g is equalto-t/n
because a perturbation which isyrat timet comes iny — 1 dt at timet + dt as we have
T(t + dt) + n(y—= dt) =1t + ny. The assumptioin*| = | "Ay| « 1 is then equivalent
to |V, |>> At wh|ch means that the phase velocity of the wave is much bigger than
numerical velocity.

Both assumptiong| « 1 and|n*| < 1 imply that|nAy| = |en*| <« 1 which is equivalent
to A > Ay and means that the wave is also well seen by the space discretization.

3. APPROXIMATION OF THE TRANSPARENT BOUNDARY CONDITION

Onthe basis of the asymptotic expansions of the generalized eigenvalues and eigenve
we will approximate the right-hand side in relation (1.22), writteh-atl, by a polynomial
in the variableg andn*.

3.1. General Considerations

We will call discrete artificial boundary conditions of order (0, 0) (resp. (1, 0)) (res
(1, 1)) the boundary conditions corresponding to the representation

di = (doo  (resp dy = (d1)oo + £(d1)10) (resp di = (d1)oo + 7 (dr)o1 + £(d1)10)

with obvious notations. By an inverse Fourier—Laplace transform, we will obtain an equa
which, after discretization with respect to the space varigbieill be used to compute the
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ficticious vaIueajfj, thus allowing the scheme to be applied up to the boundary poin

(X0, ¥j)-
More precisely, the matrisM defined in Subsection 1.3 admits the developmdnt
Moo + i 7*Mo1 + eM1g + O(g?) + O(1*?). Its inverseN is given by

N = Noo + i7*Noz + N1o + O(%) + O(n*?) (3.1)
with Noo= (Moo) ™, No1 = — NgoMo1Noo, N1o= —NooM10Noo and we have

4 4 4
dy = Z(@))j { Z(Nij )oo(pi)oo®ho + i n* Z [(Ni))o1(01)00®po + (Nij)oo(pi)ooPpy]

j=1 i=1 i=1

4
+¢ Z [(Nij)10(pi )00@ho + (Nij)oo(oi)10Ph0 + (Nijoo(pi )oo‘bilo] }
=1

+ 0@ + 0 (3.2)
which can be written under the condensed form
di = (Ao + in* Aos + £ 4100 + O(e?) + O(n*). (3.3)

3.2. Approximation of Order1, 0)

At order 0 with respect tg*, the relation (3.3) becomes = (Ao + eA10)0o + O(?)
+ O(n*). We have successively

dh = Ago(! + AggA10)Go + O(e?) + O(n") (3.4)

(I + eAgaA10) " Agddh = o + O(eD) + O(n") (3.5)

(1 — eAgaAio) Agidy = Go + O(?) + O(n") (3.6)
ety = AooAgdi — AooAzg-Aoodo + O(e?) + O (") (3.7

and we finally obtain

dﬂ'—l = (AooAIol + |)d£j - AooAfoleogg,y (3.8)

3.3. Approximation of Order1, 1)

Following (3.3), we have successively

di — in*Ao1Go = Aoo(! + eAggA10) Go + O(e?) + O(n*?) (3.9)
(I + eAgsAro) " Aoa (A — in" Ando) = Go + O(H) + O(?)  (3.10)
(Ags — e AgsA10Agd) (di — in"Au) = Go+ O(D + O(p?)  (3.11)
AgsArodgpeds = Aggds — in* AgdAoido — Go + O(e?) + O(*?)  (3.12)

edy = AooAad; — in* Ao ATt AoiGo — AcoArd AcoGo + O(e?) + O(*?). (3.13)
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After multiplication bye and inverse Fourier—Laplace transform, we obtain

d
A y) = 2d0(y) —di(Y) + Aooso (df — A7) () — AooAss AuAdy 565 (Y)
— AooAzgAoo(95 — 957 (). (3.14)

Approximating they-derivative by a second order centered finite difference, we end up w

_ _ _ _ 1, . _
df* = 200 — df* + AooAg (o] — df") — AooAsgAor; (96131 — 68it)
— AooAzd Aoo(g5; — 957%)- (3.15)

3.4. Interpretation of the Discrete Artificial Boundary Conditions of Ord@r0)
in the Supersonic and Subsonic Outflow Cases

In the supersonic outflow case, thaes are all strictly positive and we havg;)oo=1,1 =
1,....4 cI>i00= g,i=1,...,4,andNgo= |, whereg denotes theth vector of the canoni-
cal basis ofR*. The matrix4oo is then equal to the identy matrix and we obtfii* = g™,
i.e., zeroth order extrapolation of the characteristic variables of mattx which makes
sense as they all propagate towards the positvalues.

In the subsonic outflow case, ondy, «», andag are strictly positive and we have

. 1
(kidoo=11=123, (pa)oo=1+ o (3.16)
1+ (% —2)
32pr T \2pr — 3)%3X
. 0
(DIOO = a 9’ I = 1’ 27 35 qDSO = }/—l 4 N (317)
o (onx = §)

(3= awx) (@ax — &) + Sprtax

x denoting the strictly negative root of the algebraic equation (2.37). The majgemd
Aop are given by

(/3= (v = 1)/2Phasy — (4/3)(1/2Py
100 detl\?l
010 0
Noo = (3.18)
((y = D/PD4/3—a1x)
001 det
1
000 detM
and
4/3)(/ 2PN/ + (¥ = D/2Ph — 2/3)a
100 vdetM :
" 010 0 (3.19)
00 = ((y = /PO — 4/3) 1
001 > detM
1
0 0O 1+W
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with

2 1\ y-1
tM = | = — J— 3.20
de (3 alx) (asx Pr> + Spy %X (3.20)

and we obtain the boundary conditions

(4/3)(1/2Pn)(1/x) + (¥ —1)/(2Pn — 2/3)a3

(A, = (goih), + oy (05, (3:21)
(A1), = (o64h), (3.22)
(o ) () 1) ((y — 1)/52(6‘15:\/'— 4/(3x)) (90,1 ), (3.23)
(dr), = (14 = > (955, (3.24)

which can be viewed as first order in space approximations of the continuous relations

yows _ (4/39)A/2Pn)A/x)(Ax/AY + ((y — D/2Pp — 2/3)Vs

aX detM we, (3:29)
8w2 _
v =0, (3.26)
dwz  ((y —1/Pn(V1+C — (4/(Bx))(AX/AL))
V— = wa, (3.27)
90X detM
and
yowe _ 1AX (3.28)
8X x At

written at the boundary point{so, y;) and at timetn 1.

4. NUMERICAL RESULTS
4.1. The 1D Case

The numerical settings, which have been defined in Subsections 4.1 and 4.5 of refer
[6], are partly recalled below to make the presentation self-sufficient.

The linearized 1D Navier—Stokes equations expressed in terms of the characteristic
ables are solved in the segment [0, 1] of th& axis and we restrict ourselves to the case
0<V <C, where both the inflow and outflow boundaries are of subsonic typandC
denote the linearized velocity and speed of sound, respectively). This case is more corr
than the supersonic ca€e< V because information propagates against the flow (see [6]

At x=0 and atx = 1, we successively adopt:

—the absorbing boundary conditions for the Euler equations [6],
—the continuous artificial boundary conditions of orders 0 and 1 with respe¢6ip
—the discrete artificial boundary conditions of orders 0 and 1 with respeet to

We chooseV = 1,p=1, andC =2 and the classical values=1.4 and P=0.75. The
kinematic viscosity is setto 0.1. We also take = 1 for the Mayer’s constant as we assume
that the equations have been non-dimensionalize isrelated toT by C = (y RT)Y/2,
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we haveT = 2.86. The flow is subsonic and the characteristic variablgsw,, andws;
propagate at respective spedtls C =3,V =1, V — C = — 1. Each characteristic variable
has initial value

fo(x) {el/rzell(w—xwz—rz) if Ix —xc| <r,
0 =

otherwise

with x; =1/2 andr =1/4. f; belongs toC>(R) and has compact support in the bow
centered aroung, with radiusr .

The segment [0, 1] is divided intointervals k;, Xi11], 0<i < —1with| =1/Ax and
X; =i AX. We have chosenx =102, i.e.,| =100. The solution of the Cauchy problem
is obtained from a computation on an intervall], 1 + L] with L “sufficiently” large (see
[5] for details).

The stability condition used in the computations reads

AX?
At <
(IV]+ C)Ax + 2v max(4/3, y /P

and is derived from a Von Neumann analysis applied to a model scalar advection-diffu
equation [5].

In Fig. 1, we have compared the errors corresponding to the absorbing boundary c
tions for the Euler equations, the continuous artificial boundary conditions of orders 0
1 with respect ta, and the discrete artificial boundary conditions of orders 0 and 1 wi
respect te. We can see that there is little difference between the discrete and contint
artificial boundary conditions.

The discrete artificial boundary conditions can also be used as numerical boundary c
tions in the case where the continuous artificial boundary conditions need to be compl
As explained in [6], when the number of boundary conditions is less than the numbe
unknowns, it is necessary to introduce extra relations, the so-called “numerical boun
conditions,” in order to close the system that has to be solved on the boundary. We k
that at a subsonic outflow boundary, the unique absorbing boundary condition for the E
equations needs to be completed by two numerical boundary conditions whereas onl;
numerical boundary condition is necessary for the two continuous artificial boundary ¢
ditions [5, 6]. In Ref. [6], we have used upwind discretizations of the advection equati
for the outgoing characteristic variables. Figure 2 shows the results obtained when repl:
these extra relations by the corresponding discrete artificial boundary conditions of ¢
1 with respect te. At the inflow boundary X = 0), we impose the transparent boundar
conditions for the Euler equations completed with an upwind discretization of the ad\
tion equation for the outgoing characteristic variadble There is a slight improvement for
the transparent boundary conditions for the Euler equations as well as for the contin
artificial boundary conditions of order 0 with respecbtbut no sensible difference for the
continuous artificial boundary conditions of order 1 with respect to

The discrete artificial boundary conditions have been built on the basis of a semi-disc
equation equivalent at second order in space to the explicit first order upwind scheme ar
the two above results, the computations have been performed using the explicit first
upwind scheme. In order to study the behaviour of the discrete artificial boundary condit
when used in conjunction with other schemes, we have employed successively the
Wendroff scheme and the flux corrected transport algorithm defined in [6, 7]. The res
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FIG. 1. Time-evolution of the (normalized§-norm of the error between the solution of the Cauchy problem
and the solutions of the mixed problems associated to the absorbing boundary conditions for the Euler eque
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FIG. 3. Time-evolution of thd?-norm of the error associated to the discrete artificial boundary condition
when used in conjunction with the first order upwind scheme (solid line, order O; dashed line, order 1) or with
Lax—Wendroff scheme (dotted line, order O; dot-dashed line, order 1).

correspond to Figs. 3 and 4 and show that we can safely use the discrete artificial boun
conditions together with other schemes than the explicit first order upwind scheme.
artificial boundary conditions are applied at the first ficticious point for the Lax—\Wendrc
scheme and at the second one for the FCT algorithm.
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FIG. 4. Time-evolution of thd?-norm of the error associated to the discrete artificial boundary conditiol
when used in conjunction with the first order upwind scheme (solid line, order O; dashed line, order 1) or
Zalesak'’s FCT algorithm (dotted line, order O; dot-dashed line, order 1).

With the discrete approach, it is possible to approximate the discrete solution outsid
computational domain at any number of ficticious points, thus allowing the use of sche
with five or even more points. For a five points scheme, for example, it is necessar
approximate the discrete solution also at the second ficticious pein®). At first order
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with respect ta, we havedAz = (Ao + &A1) Go, where thejth columns of the X 3 matrices
Ao and.A; are respectively given by

3
(Ao)j =D _(Nij)o(p)5Py (4.1)
i=1
and
(A =Y [(Nipo(e)3Ph + (Nij o 2(0)o(p)1®, + (Nip1(o)3P,]  (4.2)
i=1
and we finally obtain
&7t = (AoAr" + 1)0d7 — AoA7" Aogs. (4-3)

Figure 5 presents the results obtained with the FCT algorithm when applied without
modification up to the boundary.

The discrete artificial boundary conditions being based on the first order upwind ¢
cretization, applying them directly to a high order five-node scheme, as done here, 1
keep the overall order of approximation low. When the main interest is accuracy, then
construction of similar boundary conditions on the basis of a high order scheme shoulc
considered. It would require considering a higher dimension eigenvalue problem inst
of (1.20)—(1.21), with the summation with respectitextending from-2 to 2 rather than
from —1 to 1. This would introduce additional rogtsand additional eigenvectors which,
in turn, would have to be taken into account in the analysis of Section 3.

There are situations, however, where just knowing how to define the discrete solut
outside the computational domain is more important than accuracy, thus justifying apply
the present low-order artificial boundary conditions to a (potentially) high-order interi
scheme. An example of such a situation is the method developed by Jagteso[8],
which is widely used with great success in many industrial CFD codes. It is a secc
order finite volume scheme with a central differencing of the fluxes, in which third ord
additional dissipation terms are added to control the damping of high frequency wa\
These numerical damping terms require the evaluation of third differences at cell interfa
At an artificial boundary, values of the solution have to be prescribed at two nodes out:
the computational domain. Besides the standard approaches [9], which are more foc
on the damping properties than on the overall accuracy, the present approach provic
mean of defining “exterior” values which are closer to the physics, as they approximate
discrete solution outside the computational domain.

4.2. The 2D Case

We recall below the model problem described in Subsection 5.1 of Ref. [6].

We want to solve the linearized 2D Navier—Stokes equations on thelstxiffo, 1] of
thexOyplane.

At x=0 and atx =1, we introduce artificial boundaries where we successively adopt

—the continuous artificial boundary conditions of orders (0, 0), (1, 0), and (1, 1) wi
respect tav, in/s) [6],

—the discrete artificial boundary conditions of orders (0, 0), (1, 0), and (1, 1) wil
respect tde, n* =nAy/e).
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FIG. 5. Time-evolution of thd?-norm of the error associated to the discrete artificial boundary conditiol
applied at one ficticious point (solid line, order 0; dashed line, order 1) or two ficticious points (dotted line, ord
dot-dashed line, order 1).

On the north boundary(= 1), we impose in all cases the absorbing boundary conditio
of order O for the Euler equations. On the south boundgrt 0), we also employ the
absorbing boundary conditions of order O for the Euler equations except%heﬁ and
u(., t =0) is symmetrical with respect to th@x axis which becomes a symmetry axis.
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For quantitie/y, T, p, v, y, R, and Pr, we keep the values of Subsection 4.1. Moreove
we choosé/, =0. AsV; < C andV;, < C, the flow is subsonic in each space direction. The
west boundary is of subsonic inflow type whereas the east boundary is of subsonic out
type. Let us introduce the two scalar functions

e/ (XX =y 1) if (x — Xc)2 + (Y — Yo)? <12,
0 otherwise

fo(x,y) = {

go(X, y) = fo(X, y) cosky (X — Xc) + ky(y — yo)l.

where fo € C*(IR?) has compact support in the bowl centered around gaintyc) with
radiusr . i i

The initial value is defined by}, =0 andV,=T = £=fo, or Vi=T = Z=go. By
modifying the direction of wave vectér= (ky, k)" in functiongo, we can study the effects
of the approximation with respect to the parameter

The segment [0, 1] is divided intb=1/AXx intervals [, xj+1],0<i <1 —1 on the
Oxaxis andJ =1/ Ay intervals jy;, yj+1], 0< j <J — 1 on theOy axis. We have chosen
Ax=Ay=21072i.e. | =J=50.

The numerical scheme is Zalesak’s FCT algorithm [6, 7].

In Fig. 6, we have superimposed the error curves associated to the discrete artif
boundary conditions of orders (0, 0), (1, 0), and (1, 1) when the initial value of the soluti
is the functionf, with x; =1/2, y. =0, andr = 1/4.

Figure 7 allows us to study the behaviour of the discrete artificial boundary conditio
of order (1, 1) for different values of the angle between xhaxis and the vectok in
the functiong, with ||K| = %, Xc =Yc =1/2,r =0.45. As for the continuous artificial
boundary conditions, we observe for long times that the error decreases with the ang|
incidence, which is coherent with the approximations made.

Figure 8 compares the discrete and continuous artificial boundary conditions of orc
(0,0),(1,0),and (1, 1). For the orders (0, 0) and (1, 0), we obtain very similar results wher
for the order (1, 1) the continuous artificial boundary conditions give the best results.

5. HIGHER ORDER DISCRETE ARTIFICIAL BOUNDARY CONDITIONS

We have seen that the discrete and continuous artificial boundary conditions of orc
(0, 0) and (1, 0) produce very similar results. On the other hand, the continuous artifi
boundary conditions of order (1, 1) produce a lower error than the corresponding disc
artificial boundary conditions and we will therefore try to improve them by taking int
account the terms ian* =nAy in the approximation of formula (1.22). The first step
consists in completing the asymptotic expansions of the generalized eigenvalues and e
vectors.

5.1. Generalized Eigenvalues and Eigenvectors of the First Kind

Setting® = ®gg + i n* Py + e P19+ i n* P11 + O(e?) + O(n*?), the vectord,; is solu-
tion of the linear system110®11 = —(Mo1 P10+ M2o®Po1+ M11Doo) = b. It requires the
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FIG. 6. Time-evolution of thé?-norm of the error associated to the discrete artificial boundary conditions
orders (0, 0) (solid line), (1, 0) (dashed line), and (1, 1) (dotted line) with fundi@s initial value.

determination ofp11, which is given by détM ) - M1, =0, and we obtain

(pi)11 = 2V2(A';/Ay) (1~|— o +vBi ), i=1...,4

i i
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FIG. 7. Time-evolution of thd2-norm of the error associated to the discrete artificial boundary condition
of order (1, 1) for(Ox, k) =0 (solid line),z/16 (dashed line)r /8 (dotted line), andr/4 (dot-dashed line) in
functiongy.
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NORME L2 DE L'ERREUR / NORME L2 DE LA VALEUR INITIALE
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of orders (0, 0) (dot-dashed line), (1, 0) (long-dashed line), and (1, 1) (dotted line) compared to the contin
artificial boundary conditions of orders (0, 0) (solid line), (1, 0) (dashed line), and (1, 1) (dotted line).
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®,, is then given by

t

Ollbz Ol1b3 Ol1b4 .

®11=1(0, s s fori = 1,
O — 01 03— 0] 04— Q71

b by \' _
<1>11=< *2%1 0,0, 24 ) fori = 2,
o] — O 04— Qa2
b by \' _
c1>11=< %O g, 2 > fori = 3.
o1 — O3 g4 — O3

and

O{4b1 O{4b2 O(4b3
®y = ; ;
01 — 04 O — 04 O3 — 04

t
,0) fori = 4.

5.2. Generalized Eigenvalues and Eigenvectors of the Second Kind

po1 is solution of de{Mgg) - Mo1=0 and is given by

det(D1/v — xDo + B) - [poo(At/AY)AP — (1 p§p) (vAL/(AxAY)BH?]
def(D1/17— XDO + B) - Do

po1 = — .
With the notationd = ®gg+ £ P19+ i 7P 11+ O(e?) + O(7?), P11 is solution of the linear
systemMo®11 = —Mo1Pqo or equivalently Po + (1 — pgo) (D1 + vB)]| @11 =b where

we have set

VAt

B2 | g 5.1
AXAy 00 ( )

_ _ At
b= {poa(D1+VvB)+ VX/OooA—yA(Z) + (1+ poo)

Forx = xi,i =1, 2, 3, &1 has the same expressionlagin (2.44), withb andA defined by
(5.1) and (2.46), respectively. Fgr= x4, we denoteXy, X,, X3, andX, as the coordinates
of vector®;;. We then haveX; =0, whereasX;, X3, andX, solve the 3x 3 linear system
with invertible matrix

o1+ (1= poo) (g +vB11) (1—poo)v B3 (1—poo)vBis
(1— poo)vBs1 a3+ (1— poo) (g +vBa3) (1— poo)vBaa
(1—poo)v Bay (1—poo)vBas as+ (11— poo) (g +vBaa)

and right hand side

_1 1

_ At 02 (Lt po VA 1 2(‘;
VX4000— 000 =

Ay 1 AXAY 6 "

2 2C

5.3. Higher Order Discrete Artificial Boundary Conditions

We now have all the necessary elements to proceed to the evaluation of the ters in
Let the matrixM introduced in Subsection 1.3 be expanded as

M = Moo+ i7*Moz + eMig + &i n*Myg + O(e?) + O(n*?).
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The term ingin* in the corresponding development of its inveléés given by
N11 = —NooM11Noo + NooMo1NooM10Noo + NooM1o0NooMo1Noo,

the following term has to be added to the right-hand side in (3.2),

4 4
ein®> (G0)j D [(Ni12(p)0ooPo + (Nij ool )01 Pl
=1 i—1

+ (Nij)oo(pi )oo®h + (Nij)oo(pi )10D}; + (Nij)o1(pi )10Dho
+ (Nipoz(on)oo®o + (Nij)10(p1 )oo®Y | = €in* A118p,

and (3.3) becomes
di = (Aoo+in* Ao + A0+ ein* A1) Go + O(e?) + O(n*?). (5.2)

From relation (5.2), the expressionsmﬁl, df*l(y), anddfjrl are obtained by adding the
terms

ein* (Aor — AooArg-Ai1) Go,
d
(Ao — AooAl_olAll)Ay@ (@6 -9% )W
and
—1 1 n n n—1 n-1
(Am — AooAig All) 5 (go,j+1 —U0j-1— %41t go,jfl)

to the right-hand sides of relations (3.13), (3.14), and (3.15), respectively.

Figure 9 compares the errors associated to the discrete artificial boundary condi
of order (1, 1), the high order discrete artificial boundary conditions, and the continu
artificial boundary conditions of order (1, 1) and we see that the high order discrete
ficial boundary conditions have an intermediate position between the continuous artif
boundary conditions of order (1, 1), with an almost identical behaviour4d®.2, and the
discrete artificial boundary conditions of order (1, 1) that they reach$d.35.

6. CONCLUSION

A hierarchy of discrete artificial boundary conditions has been proposed for the c
pressible Navier—Stokes equations linearized about a constant state. As for the contir
approach, the method of derivation uses the Fourier and Laplace transforms together
asymptotic expansions under the assumptions of low time frequencies and long space
lengths.

Unlike the continuous artificial boundary conditions, the discrete artificial bound:
conditions are self-sufficient: their number is always equal to the number of unknow
Moreover, they constitute a good source of numerical boundary conditions in the
where the continuous artificial boundary conditions need to be completed.

The discrete artificial boundary conditions have been implemented in 1D and 2D m
problems and they compare quite well with the continuous artificial boundary conditic
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NORME L2 DE L'ERREUR / NORME L2 DE LA VALEUR INITIALE
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FIG. 9. Time-evolution of thé2-norm of the error associated to the discrete artificial boundary conditions
order (1, 1) (solid line), the high order discrete artificial boundary conditions (dashed line), and the continu
artificial boundary conditions of order (1, 1) (dotted line).
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Moreover, they can be coupled to schemes having arbitrary stencils, since they are |
on the definition of the ficticious values of the discrete solution outside the computatic
domain.

A higher order discrete artificial boundary condition has also been proposed which
proves the discrete artificial boundary conditions of order (1, 1) for the small times.

The discrete approach developed herein was based on a fully discrete scheme f
solution outside the computational domain, namely the first order upwind scheme.
very interesting point would be to consider a scheme semi-discrete in space, in ord
have access to other time integration schemes (Runge—Kutta schemes, implicit sche
For accuracy purposes, it would also be quite interesting to apply the method to higher «
space discretizations in order to obtain discrete artificial boundary conditions which cc
be coupled to high-order interior schemes without degrading the overall accuracy.
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