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In the first part of this paper (J. Comput. Phys.137, 1, 1997), continuous artificial
boundary conditions for the linearized compressible Navier–Stokes equations were
proposed which were valid for small viscosities, high time frequencies, and long space
wavelengths. In the present work, a new hierarchy of artificial boundary conditions
is derived from the so-called “discrete” approach, which consists in working directly
on the discretized equations, under the assumption of low time frequencies instead
of small viscosities. The discrete artificial boundary conditions are implemented
in 1D and 2D model problems and they compare quite well with the continuous
artificial boundary conditions. Being self-sufficient by construction, they can be
used as numerical boundary conditions and be coupled to schemes having arbitrary
stencils. c© 1998 Academic Press

INTRODUCTION

In order to compute in a bounded region a flow modeled by a problem formulated on
an infinite domain, one often introduces an artificial boundary0 and tries to write on the
domainÄ bounded by0 an initial boundary value problem whose solution is as close as
possible to the solution of the original problem. When the solution of the mixed problem
onÄ coincides with the restriction of the solution of the Cauchy problem, the boundary0

is said to betransparent.
In general, the associated boundary condition, called thetransparent boundary condition,

is integral in time and space on the boundary and is usually replaced by local approximations,
i.e., differential in time and space: theartificial boundary conditions.
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In the so-called “linear treatment,” the solution outside the artificial boundary is assumed
to be a perturbation of a smooth steady state (often constant) about which the equations
are linearized. The derivation and the analysis of the artificial boundary conditions is then
performed on the linear equations.

The compressible Navier–Stokes equations belong to the class ofincompletely parabolic
equations. Laurence Halpern has proposeded in [3] a general method for deriving artificial
boundary conditions for incompletely parabolic perturbations of hyperbolic systems, using
the Fourier and Laplace transforms as essential tools after the equations have been linearized
about a constant state. This method has been applied by the author to the compressible
Navier–Stokes equations to obtain high order artificial boundary conditions, valid under
the assumptions of small viscosities, high time frequencies, and long space wavelengths
[5, 6].

There is another way of addressing the problem of the artificial boundary conditions.
Introduced for the wave equations by Engquist and Majda [14] and also by Halpern [2],
it consists in working directly on the discretized equations. This “discrete” approach has
been successfully applied by the author in [5] to the compressible Navier–Stokes equations
discretized by the explicit first order upwind scheme. The asymptotic expansions with
respect to the viscosity are replaced by developments assuming low time frequencies. Other
approaches for artificial boundary conditions have been proposed in Refs. [10–12]. A review
on the subject can be found in [13].

This article, which is the continuation of [6], presents the main results of the work in
[5], where the interested reader will find more details. In Section 1, the discrete transparent
boundary condition for the negative half-spacei ≤ 0 is derived from the discrete transmis-
sion boundary conditions using a method quite similar to that employed in the continuous
approach [6]. As in the continuous case, the discrete transparent boundary condition is
integral in time and space on the boundary. In Section 2, the generalized eigenvalues and
eigenvectors involved in the expression of the discrete transparent boundary condition are
approximated by asymptotic expansions valid for low time frequencies and long space
wavelengths. In Section 3, the results of Section 2 are used to build a hierarchy of discrete
artificial boundary conditions which are local in time and space. In Section 4, 1D and 2D
numerical results are presented and, in particular, the discrete artificial boundary conditions
are compared to the continuous ones [6]. Finally, in Section 5, higher order discrete artificial
boundary conditions are proposed.

Unlike the continuous artificial boundary conditions, the discrete artificial boundary
conditions are self-sufficient: their number is always equal to the number of unknowns.
Moreover, they can be used as numerical boundary conditions in the case where the con-
tinuous artificial boundary conditions need to be completed. Also, they can be coupled to
schemes with arbitrary stencils since they are based on the definition of approximate values
of the discrete solution outside the computational domain.

1. THE TRANSPARENT BOUNDARY CONDITION

FOR THE NEGATIVE HALF-SPACE

Let (ui, j )i, j ∈Z be a family of vectors belonging toR4. We will denote(gi, j )i ≤0, j ∈Z as the
family (ui, j )i ≤0, j ∈Z and(di, j )i ≥0, j ∈Z the sequence(ui, j )i ≥0, j ∈Z.
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1.1. The Transmission Boundary Conditions

Let (vi, j )i, j ∈Z be an element of(R4)Z
2
. It can be shown easily that(un

i, j )n∈N,i, j ∈Z is
solution of the discrete Cauchy problem,un+1

i, j =
1∑

α,β=−1

Aα,βun
i +α, j +β ∀ n ∈N, ∀ (i, j ) ∈Z2

u0
i, j = vi, j ∀ (i, j ) ∈Z2

(1.1)

if and only if (gn
i, j )n∈N,i ≤0, j ∈Z and(dn

i, j )n∈N,i ≥0, j ∈Z solve gn+1
i, j =

1∑
α,β=−1

Aα,βgn
i +α, j +β ∀ n ∈N, ∀ i ≤ −1, ∀ j ∈Z

g0
i, j = vi, j ∀ i ≤ 0, ∀ j ∈Z

(1.2)

and dn+1
i, j =

1∑
α,β=−1

Aα,βdn
i +α, j +β ∀ n ∈N, ∀ i ≥ 1, ∀ j ∈Z

d0
i, j = vi, j ∀ i ≥ 0, ∀ j ∈Z

(1.3)

with the transmission boundary conditions

gn+1
0, j =

1∑
β=−1

(
0∑

α=−1

Aα,βgn
α, j +β + A1,βdn

1, j +β

)
∀ n ∈N, ∀ j ∈Z (1.4)

gn
0, j = dn

0, j ∀ n ∈N, ∀ j ∈Z. (1.5)

1.2. The Solution in the Positive Half-Space

The 2D linearized compressible Navier–Stokes equations have been presented in [6] and
we use here the same notations. It is well known that the first order explicit upwind scheme,
which is first-order consistent in both space and time, approaches the equation

∂u

∂t
= A(1) ∂u

∂x
+ A(2) ∂u

∂y
+

(
νP(1,1) + 1x

2

∣∣A(1)
∣∣)∂2u

∂x2

+
(

νP(2,2) + 1y

2

∣∣A(2)
∣∣)∂2u

∂y2
+ 2νP(1,2) ∂2u

∂x∂y
(1.6)

at first order in time and second order in space. In other words, Eq. (1.6) is the PDE equivalent
to the first order explicit upwind scheme at first order in time and second order in space. By
semi-discretization with respect tot andx, we obtain

un+1
i =

1∑
α=−1

Lαun
i +α, (1.7)

where the differential operators iny Lα are given by

L−1 = − 1t

21x
A(1) + 1t

1x2

(
νP(1,1) + 1x

2

∣∣A(1)
∣∣) − ν

1t

1x
P(1,2) d

dy
(1.8)
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L0 = I − 2
1t

1x2

(
νP(1,1) + 1x

2

∣∣A(1)
∣∣) + 1t A(2) d

dy

+ 1t

(
νP(2,2) + 1y

2

∣∣A(2)
∣∣) d2

dy2
= I + L ′

0 (1.9)

L1 = 1t

21x
A(1) + 1t

1x2

(
νP(1,1) + 1x

2

∣∣A(1)
∣∣) + ν

1t

1x
P(1,2) d

dy
. (1.10)

The initial valueu0 is assumed to have compact support in the negative half-spacei < 0
and we consider the problem

dn+1
i (y) =

1∑
α=−1

Lαdn
i +α(y) ∀ n ∈N, ∀ i ≥ 1, ∀ y ∈R (1.11)

dn
0 (y) = gn(y) ∀ n ∈N, ∀ y ∈R (1.12)

d0
i (y) = 0 ∀ i ∈N, ∀ y ∈R (1.13)

with (gn)n∈N belonging to{[L2(R)]4}N.
The scheme defined by (1.11) can be viewed as acting on continuous functions of time

taking their values in the Hilbert spacel 2(N; [L2(R)]4) defined by

l 2(N; [L2(R)]4) =
{

(di ) ∈ {[L2(R)]4}N;
+∞∑
i =0

|di |2[L2(R)]4 < +∞
}

:

di (y, t + 1t) =
1∑

α=−1

Lαdi +α(y, t).

(1.14)

Denotingd̂i (η, s) as the Fourier–Laplace transform ofdi (y, t) at pointsη ands= σ + i τ ,
with s> 0, the relation (1.11) becomes

L̂−1(η)d̂i −1(η, s) + (
L̂ ′

0(η) − ε I
)
d̂i (η, s) + L̂1(η)d̂i +1(η, s) = 0. (1.15)

The symbolŝL−1(η), L̂ ′
0(η), and L̂1(η) of the differential operatorsL−1, L ′

0, andL1 are
given by

L̂−1(η) = − 1t

21x
A(1) + 1t

1x2

(
νP(1,1) + 1x

2

∣∣A(1)
∣∣) − ν

1t

1x1y
P(1,2)i η1y (1.16)

L̂ ′
0(η) = − 21t

1x2

(
νP(1,1) + 1x

2

∣∣A(1)
∣∣) + 1t

1y
A(2)i η1y

+ 1t

1y2

(
νP(2,2) + 1y

2

∣∣A(2)
∣∣)(i η1y)2 (1.17)

L̂1(η) = 1t

21x
A(1) + 1t

1x2

(
νP(1,1) + 1x

2

∣∣A(1)
∣∣) + ν1t

1x1y
P(1,2)i η1y, (1.18)

whereε = z − 1 andz= es1t = eσ1t ei τ1t .
According to [4], the general solution inl 2(N; [L2(R)]4) of the difference equation (1.15)

reads

d̂i (η, s) =
∑

j/|ρ j |<1

Pj (i, η, s)[ρ j (η, s)] i , (1.19)
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where theρ j (η, s) are the roots with|ρ j (η, s)| < 1 of the algebraic equation of degree 8

det
(
L̂−1(η)ρ−1 + L̂ ′

0(η) + L̂1(η)ρ − ε I
) = 0 (1.20)

and where thePj (i, η, s) are polynomials ini with coefficients inC4, the degree ofPj being
one less than the multiplicity ofρ j .

PROPOSITION 1. For each complex number z with|z| > 1, η(z) > 0 exists such that
∀ |η| < η(z), Eq.(1.20) admits four roots with|ρ| < 1, the four remaining verifying|ρ| > 1.

Proof. See [5].

Let us now consider the following generalized eigenvalue problem: find(ρ, 8)∈C×C4

solving (
1∑

α=−1

L̂α(η)ρα − z I

)
8 = 0. (1.21)

For (ρ, 8) solution of (1.21),ρ and8 will be respectively called ageneralized eigenvalue
and ageneralized eigenvector(related to the generalized eigenvalueρ). We have the

THEOREM 1. We assume that r> 0 exists such that for each complex number z with
|z| > 1, verifying |z − 1| < r and for each real numberη with |η| < η(z) (see Proposition
1), the generalized eigenvectors8 j , j = 1, . . . , 4 associated to the generalized eigenvalues
ρ with |ρ| < 1 are linearly independent.

Then, the solution in l2(N; [L2(R)]4) of the problem(1.11)–(1.13) reads, in terms of
variablesη and s,

d̂i (η, s) =
4∑

j =1

λ j (η, s)[ρ j (η, s)] i 8 j (η, s), (1.22)

where(ρ j , 8
j ) are solutions of Eq.(1.21), the coefficientsλ j being determined by the

boundary conditions(1.12).

Proof. Following (1.19), the set of the solutions inl 2(N; [L2(R)]4) of the difference
equation (1.15) is a four dimensional vector space. The8 j , j = 1, . . . , 4, being linearly
independant, the elementary solutions(ρ j )

i 8 j , j = 1, . . . , 4, are also linearly independant
thus forming a basis of that space.

1.3. The Transparent Boundary Condition

The coefficientsλ j in the above theorem solve the fourth order linear system

4∑
j =1

λ j 8
j = ĝ(η, s). (1.23)

With M the 4× 4 matrix defined byM jk = 8k
j andN = M−1 its inverse, they are given by

λ j = ∑4
k=1 Njk ĝk.

Let gn
0(y) be the projection of family(gn

0, j ) on the set of continuous functions, linear
in each segment [yj , yj +1]. If we choosegn(y) = gn

0(y), the transmission condition (1.4)
leads to:
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THEOREM 2. The transparent boundary condition at i= 0 for the negative half-space
is

gn+1
0, j =

1∑
β=−1

{
0∑

α=−1

Aα,βgn
α, j +β + A1,β

∫
R2

ei η(yj +β1y)e(σ+i τ)tn

×
[

4∑
j,k=1

Njk (̂g0)k(ρ j )
18 j

]
(η, σ + i τ) dη dτ

}
. (1.24)

2. GENERALIZED EIGENVALUES AND EIGENVECTORS

As in the continuous case, the generalized eigenvalues and eigenvectors defined by (1.21)
are non-rational functions of variableszandη and the transparent boundary condition (1.24)
is thus integral with respect tot andy. In order to obtain boundary conditions which are
local in time and space, we will develop the generalized eigenvalues and eigenvectors at
first order with respect to the parametersε = z − 1 andη∗ = η1y/ε assumed small.

2.1. General Considerations

We will not make any approximation with respect to the viscosityν because the quantities
ν1t/1x2, ν1t/1y2, andν1t/(1x1y) may be big even ifν ¿ 1 and we will work with
the characteristic variablesw of matrix A(1). They are defined byw =P (1)−1

u and solve the
equation

∂

∂t
w = 3(1) ∂

∂x
w +A(2) ∂

∂y
w + νB(1,1) ∂2

∂x2
w + νB(2,2) ∂2

∂y2
w + 2νB(1,2) ∂2

∂x∂y
w (2.1)

with

A(2) =


−V̄2 −1/2 0 0

−C̄2 −V̄2 0 C̄2

0 0 −V̄2 0

0 1/2 0 −V̄2

 (2.2)

B(1,1) =


2
3 + γ−1

2 Pr 0 1
2 Pr

2
3 − γ−1

2 Pr

0 1 0 0
γ−1
Pr 0 1

Pr − γ−1
Pr

2
3 − γ−1

2 Pr 0 − 1
2 Pr

2
3 + γ−1

2 Pr

 (2.3)

B(2,2) =


1
2 + γ−1

2 Pr 0 1
2 Pr

1
2 − γ−1

2 Pr

0 4
3 0 0

γ−1
Pr 0 1

Pr − γ−1
Pr

1
2 − γ−1

2 Pr 0 − 1
2 Pr

1
2 + γ−1

2 Pr

 (2.4)
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B(1,2) = 1

6


0 1

2C̄
0 0

C̄ 0 0 C̄

0 0 0 0

0 1
2C̄

0 0

 (2.5)

∣∣A(2)
∣∣ =


1
2(|V̄2| + M2)

m2

2C̄
0 1

2(|V̄2| − M2)

C̄m2 M2 0 −C̄m2

0 0 |V̄2| 0
1
2(|V̄2| − M2) − m2

2C̄
0 1

2(|V̄2| + M2)

 (2.6)

m2 = sgn(V̄2) min(|V̄2|, C̄), M2 = max(|V̄2|, C̄). (2.7)

We choose the notations

ρ = ρ00 + i η̄ρ01 + ερ10 + (i η̄)2ρ02 + i η̄ερ11 + ε2ρ20 + O(ε3) + O(η̄3), (2.8)

where we have introduced the non-dimensional variable ¯η = η1y = εη∗. The solutions
(ρ, 8) of the generalized eigenvalue problem (1.21) verifyM(ρ, ε, η̄)8 = 0 with

M(ρ, ε, η̄) = L̂−1
00 + i η̄L̂−1

01 + ρ
(
L̂ ′

0

00 + i η̄L̂ ′
0

01 + (i η̄)2L̂ ′
0

02 − ε I
) + ρ2

(
L̂1

00 + i η̄L̂1
01)

(2.9)

and

L̂−1
00 = − 1t

21x

(
3(1) − ∣∣3(1)

∣∣) + ν1t

1x2
B(1,1), L̂−1

01 = − ν1t

1x1y
B(1,2) (2.10)

L̂ ′
0

00 = − 1t

1x

∣∣3(1)
∣∣ − 2ν1t

1x2
B(1,1), L̂ ′

0

01 = 1t

1y
A(2),

(2.11)
L̂ ′

0

02 = 1t

21y

∣∣A(2)
∣∣ + ν1t

1y2
B(2,2)

L̂1
00 = 1t

21x

(
3(1) + ∣∣3(1)

∣∣) + ν1t

1x2
B(1,1), L̂1

01 = ν1t

1x1y
B(1,2). (2.12)

Injecting the asymptotic expansion (2.8) in the expression of matrixM, we obtain

M =M00 + i η̄M01 + εM10 + (i η̄)2M02 + i η̄εM11 + ε2M20 + O(ε3) + O(η̄3)

(2.13)

with

M00 = L̂−1
00 + ρ00L̂ ′

0

00 + ρ2
00L̂1

00
(2.14)

M01 = L̂−1
01 + ρ00L̂ ′

0

01 + ρ2
00L̂1

01 + ρ01
(
L̂ ′

0

00 + 2ρ00L̂1
00)

(2.15)
M10 = ρ10

(
L̂ ′

0

00 + 2ρ00L̂1
00) − ρ00I
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
M02 = ρ02

(
L̂ ′

0

00 + 2ρ00L̂1
00) + ρ2

01L̂1
00 + ρ01

(
L̂ ′

0

01 + 2ρ00L̂1
01) + ρ00L̂ ′

0

02

M11 = ρ11
(
L̂ ′

0

00 + 2ρ00L̂1
00) + ρ10

(
L̂ ′

0

01 + 2ρ00L̂1
01) + 2ρ01ρ10L̂1

00 − ρ01I

M20 = ρ20
(
L̂ ′

0

00 + 2ρ00L̂1
00) + ρ2

10L̂1
00 − ρ10I .

(2.16)
MatrixM00 can easily be put under the form

M00 = (1 − ρ00)[D0 + (1 − ρ00)(D1 + ν̄B)] (2.17)

with

α1 = (V̄1 + C̄)
1t

1x
, α2 = α3 = V̄1

1t

1x
, α4 = (V̄1 − C̄)

1t

1x
(2.18)

α+
i = max(0, αi ), α−

i = max(0, −αi ), i = 1, . . . , 4 (2.19)

ν̄ = ν1t

1x2
(2.20)

D−1 = diag(α+
1 , α+

2 , α+
3 , α+

4 ), D0 = diag(α1, α2, α3, α4),

D1 = diag(α−
1 , α−

2 , α−
3 , α−

4 ), B = B(1,1)

(2.21)

and we see that the algebraic equation of degree 8 det(M00) = 0 admits the quadruple
root ρ00 = 1. We will thus distinguish the generalized eigenvalues whose limit is 1 as
(ε, η∗) → (0, 0) from the others. In the sequel, they will be named respectively “generalized
eigenvalues of the first kind” and “generalized eigenvalues of the second kind.”

2.2. Generalized Eigenvalues and Eigenvectors of the First Kind

For the generalized eigenvalues of the first kind, the matrixM00 vanishes and we have

M = ε
{
M10+ i η∗M01+εM20+ i η∗εM11+(i η∗)2εM02

}+ O(ε3)+ O(η∗3). (2.22)

ρ10, ρ01, andρ20 are given respectively by equations

det(M10) = 0 (2.23)

det′(M10) ·M01 = 0 (2.24)

det′(M10) ·M20 = 0. (2.25)

The associated generalized eigenvectors are expanded under the form

8 = 800 + i η∗801 + ε810 + O(ε2) + O(η∗2) (2.26)

and the terms800, 801, and810 are determined by solving the linear systems

M10800 = 0 (2.27)

M10801 = −M01800 (2.28)

and

M10810 = −M20800. (2.29)
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We finally obtain

ρi = 1 + i η̄
−V̄2(1t/1y)

αi
− 1

αi
ε + 1

α2
i

[
1 + 1

αi
(ν̄Bii + α−

i )

]
ε2 + O(ε3) + O(η∗2)

(2.30)

81 =


1
0
0
0

 + εν̄

α1


0

B21/(α1 − α2)

B31/(α1 − α3)

B41/(α1 − α4)

 + i η∗ 1t

1y


0

−C̄(V̄1 + C̄)

0
0

 + O(ε2) + O(η∗2)

(2.31)

82 =


0
1
0
0

 + ε0 + i η∗ 1t

1y


1
2

V̄1

C̄

0
0

1
2

V̄1

C̄

 + O(ε2) + O(η∗2) (2.32)

83 =


0
0
1
0

 + εν̄

α3


B13/(α3 − α1)

B23/(α3 − α2)

0
B43/(α3 − α4)

 + i η∗0 + O(ε2) + O(η∗2) (2.33)

84 =


0
0
0
1

 + εν̄

α4


B14/(α4 − α1)

B24/(α4 − α2)

B34/(α4 − α3)

0

 + i η∗ 1t

1y


0

−C̄(V̄1 − C̄)

0
0

 + O(ε2) + O(η∗2)

(2.34)

and we will only consider the(ρi , 8
i ) such thatαi > 0 for which it is shown in [5] that

|1 − (1/αi )ε| < 1.

2.3. Generalized Eigenvalues and Eigenvectors of the Second Kind

ρ00 is a root of the algebraic equation of degree 4 det[D0 + (1− ρ00)(D1 + ν̄B)] = 0,
which admits the obvious rootρ00 = 1 + α2/(ν̄ + α−

2 ), andρ10 is given by det′(M00) ·
M10 = 0.

If we set8 = 800 + ε810 + O(ε2) + O(η̄), the vectors800 and810 are respectively
given byM00800 = 0 andM00810 = −M10800 and we obtain

ρi =
(

1 + 1

ν̄χi

)(
1 + ε

11 + 13 + 14

α111 + α313 + α414

)
+ O(ε2) + O(η∗2) (2.35)

ρ4 =
(

1 + α2

ν̄ + α−
2

)(
1 + ε

1

α2

)
+ O(ε2) + O(η∗2). (2.36)

χ1, χ2, andχ3 denote the roots of the algebraic equation of degree 3 with real coefficients

χ3 + a2χ
2 + a1χ + a0 = 0 (2.37)
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with

a2 = −
(

2

3
+ γ − 1

2Pr
+ α−

4

ν̄

)
1

α4
−

(
1

Pr
+ α−

3

ν̄

)
1

α3
−

(
2

3
+ γ − 1

2Pr
+ α−

1

ν̄

)
1

α1
(2.38)

a1 = 1

α1α3

[(
2

3
+ γ − 1

2Pr
+ α−

1

ν̄

)(
1

Pr
+ α−

3

ν̄

)
− γ − 1

2Pr2

]

+ 1

α1α4

[(
2

3
+ γ − 1

2Pr
+ α−

1

ν̄

)(
8

3
+ α−

1

ν̄
+ α−

4

ν̄

)
−

(
4

3
+ α−

1

ν̄

)2
]

+ 1

α3α4

[(
2

3
+ γ − 1

2Pr
+ α−

4

ν̄

)(
1

Pr
+ α−

3

ν̄

)
− γ − 1

2Pr2

]
(2.39)

a0 = 1

α1α3α4

{(
1

Pr
+ α−

3

ν̄

)[(
2

3
+ γ − 1

2Pr

)2

−
(

2

3
+ γ − 1

2Pr
+ α−

1

ν̄

)

×
(

2

3
+ γ − 1

2Pr
+ α−

4

ν̄

)]
+ γ − 1

2Pr2

(
8

3
+ α−

1

ν̄
+ α−

4

ν̄

)}
(2.40)

and11, 13, and14 are defined by

11 = {α3 + (1 − ρ00)[ν̄B33 + α−
3 ]}{α4 + (1 − ρ00)[ν̄B44 + α−

4 ]} − (1 − ρ00)
2ν̄2B43B34

(2.41)

13 = {α4 + (1 − ρ00)[ν̄B44 + α−
4 ]}{α1 + (1 − ρ00)[ν̄B11 + α−

1 ]} − (1 − ρ00)
2ν̄2B14B41

(2.42)

14 = {α1 + (1 − ρ00)[ν̄B11 + α−
1 ]}{α3 + (1 − ρ00)[ν̄B33 + α−

3 ]} − (1 − ρ00)
2ν̄2B31B13.

(2.43)

For the associated generalized eigenvectors, we have

8i =



4
3

1
2 Pr +

(
2
3 − γ−1

2 Pr

)( α−
3
ν̄

− α3χi
)

0
γ − 1

Pr

(
α1χi − 4

3 − α−
1
ν̄

)
(

2
3 + α−

1
ν̄

− α1χi
)(

α3χi − 1
Pr − α−

3
ν̄

) + γ − 1
2 Pr

(
α3χi − α−

3
ν̄

)



+ ε


((γ − 1)/Pr)b1+(2/3− ((γ − 1)/2 Pr))b3

1

b2

α2+(1− ρ00)(ν̄ + α−
2 )

0
((γ − 1)/Pr)b1 − (2/3+ ((γ−1)/2 Pr) + α−

1 /ν̄ − α1χi )b3

1

+ O(ε2)+ O(η∗2), i = 1, 2, 3

(2.44)
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84 =


0
1
0
0

 + ε0 + O(ε2) + O(η∗2) (2.45)

with

1 = γ − 1

Pr

[
α1 + (1 − ρ00)

(
4

3
ν̄ + α−

1

)]
, (2.46)

b = 1

1 − ρ00
(ρ00I − ρ10D0)800. (2.47)

For i ≤ 3, we useρi whenχi < 0 whereasρ4 is kept in the caseα2 < 0.

2.4. Interpretation of the Assumptions Underlying the Asymptotic Expansions

Taking the Fourier–Laplace transform of Eq. (1.11) is equivalent to looking for solutions
of the form

di (y, t) = eσ t ei (ηy+τ t)d̂i (η, σ + i τ) (2.48)

which have a sinusoidal behaviour in time and space, with respective periodsT = 2π
|τ | and

λ = 2π
|η| . We choose a time step1t and a space step1y. Only those waves for whichT À 1t ,

or equivalently|τ |1t ¿ 2π , are well seen by the time discretization. If we consider that
ei τ1t − 1 is equivalent toi τ1t asτ tends to 0, we recover the assumption|ε| ¿ 1 small
behind the previous asymptotic expansions.

Moreover, the phase velocityVϕ of the sinusoidal plane waveei (ηy+τ t)d̂i is equal to−τ/η

because a perturbation which is iny at timet comes iny − τ
η

dt at timet + dt as we have
τ(t + dt) + η(y − τ

η
dt) = τ t + ηy. The assumption|η∗| = | η1y

ε
| ¿ 1 is then equivalent

to |Vϕ| À 1y
1t which means that the phase velocity of the wave is much bigger than the

numerical velocity.
Both assumptions|ε| ¿ 1 and|η∗| ¿ 1 imply that|η1y| = |εη∗| ¿ 1 which is equivalent

to λ À 1y and means that the wave is also well seen by the space discretization.

3. APPROXIMATION OF THE TRANSPARENT BOUNDARY CONDITION

On the basis of the asymptotic expansions of the generalized eigenvalues and eigenvectors,
we will approximate the right-hand side in relation (1.22), written ati = 1, by a polynomial
in the variablesε andη∗.

3.1. General Considerations

We will call discrete artificial boundary conditions of order (0, 0) (resp. (1, 0)) (resp.
(1, 1)) the boundary conditions corresponding to the representation

d̂1 = (d̂1)00 (resp. d̂1 = (d̂1)00 + ε(d̂1)10) (resp. d̂1 = (d̂1)00 + η∗(d̂1)01 + ε(d̂1)10)

with obvious notations. By an inverse Fourier–Laplace transform, we will obtain an equation
which, after discretization with respect to the space variabley, will be used to compute the
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ficticious valuesdn
1, j , thus allowing the scheme to be applied up to the boundary points

(x0, yj ).
More precisely, the matrixM defined in Subsection 1.3 admits the developmentM =

M00 + i η∗M01 + εM10 + O(ε2) + O(η∗2). Its inverseN is given by

N = N00 + i η∗N01 + εN10 + O(ε2) + O(η∗2) (3.1)

with N00 = (M00)
−1, N01 = −N00M01N00, N10 = −N00M10N00 and we have

d̂1 =
4∑

j =1

(ĝ0) j

{
4∑

i =1

(Ni j )00(ρi )008
i
00 + i η∗

4∑
i =1

[
(Ni j )01(ρi )008

i
00 + (Ni j )00(ρi )008

i
01

]
+ ε

4∑
i =1

[
(Ni j )10(ρi )008

i
00 + (Ni j )00(ρi )108

i
00 + (Ni j )00(ρi )008

i
10

]}
+ O(ε2) + O(η∗2) (3.2)

which can be written under the condensed form

d̂1 = (A00 + i η∗A01 + εA10)ĝ0 + O(ε2) + O(η∗2). (3.3)

3.2. Approximation of Order(1, 0)

At order 0 with respect toη∗, the relation (3.3) becomeŝd1 = (A00 + εA10)ĝ0 + O(ε2)

+ O(η∗). We have successively

d̂1 = A00
(
I + εA−1

00A10
)
ĝ0 + O(ε2) + O(η∗) (3.4)(

I + εA−1
00A10

)−1A−1
00d̂1 = ĝ0 + O(ε2) + O(η∗) (3.5)(

I − εA−1
00A10

)
A−1

00d̂1 = ĝ0 + O(ε2) + O(η∗) (3.6)

εd̂1 = A00A−1
10 d̂1 −A00A−1

10A00ĝ0 + O(ε2) + O(η∗) (3.7)

and we finally obtain

dn+1
1, j = (

A00A−1
10 + I

)
dn

1, j −A00A−1
10A00g

n
0, j . (3.8)

3.3. Approximation of Order(1, 1)

Following (3.3), we have successively

d̂1 − i η∗A01ĝ0 = A00
(
I + εA−1

00A10
)
ĝ0 + O(ε2) + O(η∗2) (3.9)(

I + εA−1
00A10

)−1A−1
00

(
d̂1 − i η∗A01ĝ0

) = ĝ0 + O(ε2) + O(η∗2) (3.10)(
A−1

00 − εA−1
00A10A−1

00

)(
d̂1 − i η∗A01ĝ0

) = ĝ0 + O(ε2) + O(η∗2) (3.11)

A−1
00A10A−1

00εd̂1 = A−1
00d̂1 − i η∗A−1

00A01ĝ0 − ĝ0 + O(ε2) + O(η∗2) (3.12)

εd̂1 = A00A−1
10 d̂1 − i η∗A00A−1

10A01ĝ0 −A00A−1
10A00ĝ0 + O(ε2) + O(η∗2). (3.13)
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After multiplication byε and inverse Fourier–Laplace transform, we obtain

dn+1
1 (y) = 2dn

1 (y) − dn−1
1 (y) +A00A−1

10

(
dn

1 − dn−1
1

)
(y) −A00A−1

10A011y
d

dy
gn−1

0 (y)

−A00A−1
10A00

(
gn

0 − gn−1
0

)
(y). (3.14)

Approximating they-derivative by a second order centered finite difference, we end up with

dn+1
1, j = 2dn

1, j − dn−1
1, j +A00A−1

10

(
dn

1, j − dn−1
1, j

) −A00A−1
10A01

1

2

(
gn−1

0, j +1 − gn−1
0, j −1

)
−A00A−1

10A00
(
gn

0, j − gn−1
0, j

)
. (3.15)

3.4. Interpretation of the Discrete Artificial Boundary Conditions of Order(0, 0)

in the Supersonic and Subsonic Outflow Cases

In the supersonic outflow case, theαi ’s are all strictly positive and we have(ρi )00 = 1, i =
1, . . . , 4, 8i

00 = ei , i = 1, . . . , 4, andN00 = I , whereei denotes thei th vector of the canoni-
cal basis ofR4. The matrixA00 is then equal to the identy matrix and we obtaindn+1

1, j = gn+1
0, j ,

i.e., zeroth order extrapolation of the characteristic variables of matrixA(1), which makes
sense as they all propagate towards the positivex values.

In the subsonic outflow case, onlyα1, α2, andα3 are strictly positive and we have

(ρi )00 = 1, i = 1, 2, 3, (ρ4)00 = 1 + 1

ν̄χ
(3.16)

8i
00 = ei , i = 1, 2, 3, 84

00 =


4
3

1
2 Pr +

( γ−1
2 Pr − 2

3

)
α3χ

0
γ−1
Pr

(
α1χ − 4

3

)
(

2
3 − α1χ

) (
α3χ − 1

Pr

) + γ−1
2 Pr α3χ

 , (3.17)

χ denoting the strictly negative root of the algebraic equation (2.37). The matricesN00 and
A00 are given by

N00 =


1 0 0 (2/3− (γ − 1)/2 Pr)α3χ − (4/3)(1/2 Pr)

detM

0 1 0 0

0 0 1 ((γ − 1)/Pr)(4/3− α1χ)

detM

0 0 0 1
detM

 (3.18)

and

A00 =


1 0 0 (4/3)(1/(2 Pr))(1/χ) + ((γ − 1)/(2 Pr) − 2/3)α3

ν̄ detM

0 1 0 0

0 0 1 ((γ − 1)/Pr)(α1 − 4/3χ)

ν̄ detM

0 0 0 1+ 1
ν̄χ

 (3.19)
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with

detM =
(

2

3
− α1χ

)(
α3χ − 1

Pr

)
+ γ − 1

2Pr
α3χ (3.20)

and we obtain the boundary conditions

(
dn+1

1, j

)
1 = (

gn+1
0, j

)
1 + (4/3)(1/(2Pr))(1/χ) + ((γ − 1)/(2Pr) − 2/3)α3

ν̄ detM

(
gn+1

0, j

)
4 (3.21)(

dn+1
1, j

)
2 = (

gn+1
0, j

)
2 (3.22)(

dn+1
1, j

)
3 = (

gn+1
0, j

)
3 + ((γ − 1)/Pr)(α1 − 4/(3χ))

ν̄ detM

(
gn+1

0, j

)
4 (3.23)

(
dn+1

1, j

)
4 =

(
1 + 1

ν̄χ

)(
gn+1

0, j

)
4 (3.24)

which can be viewed as first order in space approximations of the continuous relations

ν
∂w1

∂x
= (4/3)(1/(2Pr))(1/χ)(1x/1t) + ((γ − 1)/(2Pr) − 2/3)V̄1

detM
w4, (3.25)

ν
∂w2

∂x
= 0, (3.26)

ν
∂w3

∂x
= ((γ − 1)/Pr)(V̄1 + C̄ − (4/(3χ))(1x/1t))

detM
w4, (3.27)

and

ν
∂w4

∂x
= 1

χ

1x

1t
w4 (3.28)

written at the boundary points(x0, yj ) and at timetn+1.

4. NUMERICAL RESULTS

4.1. The 1D Case

The numerical settings, which have been defined in Subsections 4.1 and 4.5 of reference
[6], are partly recalled below to make the presentation self-sufficient.

The linearized 1D Navier–Stokes equations expressed in terms of the characteristic vari-
ables are solved in the segment [0, 1] of theOx axis and we restrict ourselves to the case
0< V̄ < C̄, where both the inflow and outflow boundaries are of subsonic type (V̄ andC̄
denote the linearized velocity and speed of sound, respectively). This case is more complex
than the supersonic casēC < V̄ because information propagates against the flow (see [6]).

At x = 0 and atx = 1, we successively adopt:

—the absorbing boundary conditions for the Euler equations [6],
—the continuous artificial boundary conditions of orders 0 and 1 with respect toν [6],
—the discrete artificial boundary conditions of orders 0 and 1 with respect toε.

We chooseV̄ = 1, ρ̄ = 1, andC̄ = 2 and the classical valuesγ = 1.4 and Pr= 0.75. The
kinematic viscosityν is set to 0.1. We also takeR= 1 for the Mayer’s constant as we assume
that the equations have been non-dimensionalized. AsC̄ is related toT̄ by C̄ = (γ RT̄)1/2,
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we haveT̄ ∼= 2.86. The flow is subsonic and the characteristic variablesw1, w2, andw3

propagate at respective speedsV̄ +C̄ = 3, V̄ = 1, V̄ −C̄ = −1. Each characteristic variable
has initial value

f0(x) =
{

e1/r 2
e1/((x−xC)2−r 2) if |x − xC| < r,

0 otherwise,

with xc = 1/2 andr = 1/4. f0 belongs toC∞(R) and has compact support in the bowl
centered aroundxc with radiusr .

The segment [0, 1] is divided intoI intervals [xi , xi +1], 0≤ i ≤ I − 1 with I = 1/1x and
xi = i 1x. We have chosen1x = 10−2, i.e., I = 100. The solution of the Cauchy problem
is obtained from a computation on an interval [−L , 1+ L] with L “sufficiently” large (see
[5] for details).

The stability condition used in the computations reads

1t ≤ 1x2

(|V̄ | + C̄)1x + 2ν max(4/3, γ /Pr)

and is derived from a Von Neumann analysis applied to a model scalar advection-diffusion
equation [5].

In Fig. 1, we have compared the errors corresponding to the absorbing boundary condi-
tions for the Euler equations, the continuous artificial boundary conditions of orders 0 and
1 with respect toν, and the discrete artificial boundary conditions of orders 0 and 1 with
respect toε. We can see that there is little difference between the discrete and continuous
artificial boundary conditions.

The discrete artificial boundary conditions can also be used as numerical boundary condi-
tions in the case where the continuous artificial boundary conditions need to be completed.
As explained in [6], when the number of boundary conditions is less than the number of
unknowns, it is necessary to introduce extra relations, the so-called “numerical boundary
conditions,” in order to close the system that has to be solved on the boundary. We know
that at a subsonic outflow boundary, the unique absorbing boundary condition for the Euler
equations needs to be completed by two numerical boundary conditions whereas only one
numerical boundary condition is necessary for the two continuous artificial boundary con-
ditions [5, 6]. In Ref. [6], we have used upwind discretizations of the advection equations
for the outgoing characteristic variables. Figure 2 shows the results obtained when replacing
these extra relations by the corresponding discrete artificial boundary conditions of order
1 with respect toε. At the inflow boundary (x = 0), we impose the transparent boundary
conditions for the Euler equations completed with an upwind discretization of the advec-
tion equation for the outgoing characteristic variablew3. There is a slight improvement for
the transparent boundary conditions for the Euler equations as well as for the continuous
artificial boundary conditions of order 0 with respect toν but no sensible difference for the
continuous artificial boundary conditions of order 1 with respect toν.

The discrete artificial boundary conditions have been built on the basis of a semi-discrete
equation equivalent at second order in space to the explicit first order upwind scheme and for
the two above results, the computations have been performed using the explicit first order
upwind scheme. In order to study the behaviour of the discrete artificial boundary conditions
when used in conjunction with other schemes, we have employed successively the Lax–
Wendroff scheme and the flux corrected transport algorithm defined in [6, 7]. The results
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FIG. 1. Time-evolution of the (normalized)l 2-norm of the error between the solution of the Cauchy problem
and the solutions of the mixed problems associated to the absorbing boundary conditions for the Euler equations
(solid line), the continuous artificial boundary conditions of orders 0 (dashed line) and 1 (dotted line), and the
discrete artificial boundary conditions of orders 0 (dot-dashed line) and 1 (long-dashed line).
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FIG. 3. Time-evolution of thel 2-norm of the error associated to the discrete artificial boundary conditions
when used in conjunction with the first order upwind scheme (solid line, order 0; dashed line, order 1) or with the
Lax–Wendroff scheme (dotted line, order 0; dot-dashed line, order 1).

correspond to Figs. 3 and 4 and show that we can safely use the discrete artificial boundary
conditions together with other schemes than the explicit first order upwind scheme. The
artificial boundary conditions are applied at the first ficticious point for the Lax–Wendroff
scheme and at the second one for the FCT algorithm.
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FIG. 4. Time-evolution of thel 2-norm of the error associated to the discrete artificial boundary conditions
when used in conjunction with the first order upwind scheme (solid line, order 0; dashed line, order 1) or with
Zalesak’s FCT algorithm (dotted line, order 0; dot-dashed line, order 1).

With the discrete approach, it is possible to approximate the discrete solution outside the
computational domain at any number of ficticious points, thus allowing the use of schemes
with five or even more points. For a five points scheme, for example, it is necessary to
approximate the discrete solution also at the second ficticious point (i = 2). At first order
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with respect toε, we haved̂2 = (A0 + εA1)ĝ0, where thej th columns of the 3×3 matrices
A0 andA1 are respectively given by

(A0)· j =
3∑

i =1

(Ni j )0(ρi )
2
08

i
o (4.1)

and

(A1)· j =
3∑

i =1

[
(Ni j )0(ρi )

2
08

i
1 + (Ni j )0 2(ρi )0(ρi )18

i
o + (Ni j )1(ρi )

2
08

i
o

]
(4.2)

and we finally obtain

dn+1
2 = (

A0A−1
1 + I

)
dn

2 −A0A−1
1 A0gn

0. (4.3)

Figure 5 presents the results obtained with the FCT algorithm when applied without any
modification up to the boundary.

The discrete artificial boundary conditions being based on the first order upwind dis-
cretization, applying them directly to a high order five-node scheme, as done here, may
keep the overall order of approximation low. When the main interest is accuracy, then the
construction of similar boundary conditions on the basis of a high order scheme should be
considered. It would require considering a higher dimension eigenvalue problem instead
of (1.20)–(1.21), with the summation with respect toα extending from−2 to 2 rather than
from −1 to 1. This would introduce additional rootsρ and additional eigenvectors which,
in turn, would have to be taken into account in the analysis of Section 3.

There are situations, however, where just knowing how to define the discrete solution
outside the computational domain is more important than accuracy, thus justifying applying
the present low-order artificial boundary conditions to a (potentially) high-order interior
scheme. An example of such a situation is the method developed by Jamesonet al. [8],
which is widely used with great success in many industrial CFD codes. It is a second
order finite volume scheme with a central differencing of the fluxes, in which third order
additional dissipation terms are added to control the damping of high frequency waves.
These numerical damping terms require the evaluation of third differences at cell interfaces.
At an artificial boundary, values of the solution have to be prescribed at two nodes outside
the computational domain. Besides the standard approaches [9], which are more focused
on the damping properties than on the overall accuracy, the present approach provides a
mean of defining “exterior” values which are closer to the physics, as they approximate the
discrete solution outside the computational domain.

4.2. The 2D Case

We recall below the model problem described in Subsection 5.1 of Ref. [6].
We want to solve the linearized 2D Navier–Stokes equations on the stripR × [0, 1] of

thex Oyplane.
At x = 0 and atx = 1, we introduce artificial boundaries where we successively adopt:

—the continuous artificial boundary conditions of orders (0, 0), (1, 0), and (1, 1) with
respect to(ν, i η/s) [6],

—the discrete artificial boundary conditions of orders (0, 0), (1, 0), and (1, 1) with
respect to(ε, η∗ = η1y/ε).
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FIG. 5. Time-evolution of thel 2-norm of the error associated to the discrete artificial boundary conditions
applied at one ficticious point (solid line, order 0; dashed line, order 1) or two ficticious points (dotted line, order 0;
dot-dashed line, order 1).

On the north boundary (y = 1), we impose in all cases the absorbing boundary conditions
of order 0 for the Euler equations. On the south boundary (y = 0), we also employ the
absorbing boundary conditions of order 0 for the Euler equations except whenV̄2 = 0 and
u(., t = 0) is symmetrical with respect to theOx axis which becomes a symmetry axis.



                  

172 LOÏC TOURRETTE

For quantitiesV̄1, T̄, ρ̄, ν, γ, R, and Pr, we keep the values of Subsection 4.1. Moreover,
we choosēV2 = 0. As V̄1 < C̄ andV̄2 < C̄, the flow is subsonic in each space direction. The
west boundary is of subsonic inflow type whereas the east boundary is of subsonic outflow
type. Let us introduce the two scalar functions

f0(x, y) =
{

e1/r 2
e1/((x−xC)2+(y−yC)2−r 2) if (x − xC)2 + (y − yC)2 < r 2,

0 otherwise

g0(x, y) = f0(x, y) cos[kx(x − xC) + ky(y − yC)],

where f0 ∈ C∞(R2) has compact support in the bowl centered around point(xC, yC) with
radiusr .

The initial value is defined bỹV2 = 0 and Ṽ1 = T̃ = ρ̃

ρ̄
= f0, or Ṽ1 = T̃ = ρ̃

ρ̄
= g0. By

modifying the direction of wave vectork = (kx, ky)
t in functiong0, we can study the effects

of the approximation with respect to the parameterη∗.
The segment [0, 1] is divided intoI = 1/1x intervals [xi , xi +1], 0≤ i ≤ I − 1 on the

Ox axis andJ = 1/1y intervals [yj , yj +1], 0≤ j ≤ J − 1 on theOy axis. We have chosen
1x = 1y = 2 10−2, i.e., I = J = 50.

The numerical scheme is Zalesak’s FCT algorithm [6, 7].
In Fig. 6, we have superimposed the error curves associated to the discrete artificial

boundary conditions of orders (0, 0), (1, 0), and (1, 1) when the initial value of the solution
is the functionfo with xc = 1/2, yc = 0, andr = 1/4.

Figure 7 allows us to study the behaviour of the discrete artificial boundary conditions
of order (1, 1) for different values of the angle between thex axis and the vectork in
the functiongo with ‖k‖ = 2π

101x , xC = yC = 1/2, r = 0.45. As for the continuous artificial
boundary conditions, we observe for long times that the error decreases with the angle of
incidence, which is coherent with the approximations made.

Figure 8 compares the discrete and continuous artificial boundary conditions of orders
(0, 0), (1, 0), and (1, 1). For the orders (0, 0) and (1, 0), we obtain very similar results whereas
for the order (1, 1) the continuous artificial boundary conditions give the best results.

5. HIGHER ORDER DISCRETE ARTIFICIAL BOUNDARY CONDITIONS

We have seen that the discrete and continuous artificial boundary conditions of orders
(0, 0) and (1, 0) produce very similar results. On the other hand, the continuous artificial
boundary conditions of order (1, 1) produce a lower error than the corresponding discrete
artificial boundary conditions and we will therefore try to improve them by taking into
account the terms inεη∗ = η1y in the approximation of formula (1.22). The first step
consists in completing the asymptotic expansions of the generalized eigenvalues and eigen-
vectors.

5.1. Generalized Eigenvalues and Eigenvectors of the First Kind

Setting8 = 800 + i η∗801 + ε810 + εi η∗811 + O(ε2) + O(η∗2), the vector811 is solu-
tion of the linear systemM10811 = −(M01810+M20801+M11800) = b. It requires the
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FIG. 6. Time-evolution of thel 2-norm of the error associated to the discrete artificial boundary conditions of
orders (0, 0) (solid line), (1, 0) (dashed line), and (1, 1) (dotted line) with functionf0 as initial value.

determination ofρ11, which is given by det′(M10) ·M11 = 0, and we obtain

(ρi )11 = 2V̄2(1t/1y)

α2
i

(
1 + α−

i + ν̄Bii

αi

)
, i = 1, . . . , 4.
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FIG. 7. Time-evolution of thel 2-norm of the error associated to the discrete artificial boundary conditions
of order (1, 1) for(Ôx, k) = 0 (solid line),π/16 (dashed line),π/8 (dotted line), andπ/4 (dot-dashed line) in
functiong0.
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FIG. 8. Time-evolution of thel 2-norm of the error associated to the discrete artificial boundary conditions
of orders (0, 0) (dot-dashed line), (1, 0) (long-dashed line), and (1, 1) (dotted line) compared to the continuous
artificial boundary conditions of orders (0, 0) (solid line), (1, 0) (dashed line), and (1, 1) (dotted line).
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811 is then given by

811 =
(

0,
α1b2

α2 − α1
,

α1b3

α3 − α1
,

α1b4

α4 − α1

)t

for i = 1,

811 =
(

α2b1

α1 − α2
, 0, 0,

α2b4

α4 − α2

)t

for i = 2,

811 =
(

α3b1

α1 − α3
, 0, 0,

α3b4

α4 − α3

)t

for i = 3,

and

811 =
(

α4b1

α1 − α4
,

α4b2

α2 − α4
,

α4b3

α3 − α4
, 0

)t

for i = 4.

5.2. Generalized Eigenvalues and Eigenvectors of the Second Kind

ρ01 is solution of det′(M00) ·M01 = 0 and is given by

ρ01 = −det′(D1/ν̄ − χD0 + B) · [
ρ00(1t/1y)A(2) − (

1 − ρ2
00

)
(ν1t/(1x1y))B(1,2)

]
det′(D1/ν̄ − χD0 + B) ·D0

.

With the notation8 = 800 + ε810 + i η̄811 + O(ε2) + O(η̄2), 811 is solution of the linear
systemM00811 = −M01800 or equivalently [D0 + (1 − ρ00)(D1 + ν̄B)]811 = b where
we have set

b =
[
ρ01(D1 + ν̄B) + ν̄χρ00

1t

1y
A(2) + (1 + ρ00)

ν1t

1x1y
B(1,2)

]
800. (5.1)

Forχ = χi , i = 1, 2, 3, 811 has the same expression as810 in (2.44), withband1defined by
(5.1) and (2.46), respectively. Forχ = χ4, we denoteX1, X2, X3, andX4 as the coordinates
of vector811. We then haveX2 = 0, whereasX1, X3, andX4 solve the 3× 3 linear system
with invertible matrixα1 + (1−ρ00)(α

−
1 + ν̄B11) (1−ρ00)ν̄B13 (1−ρ00)ν̄B14

(1−ρ00)ν̄B31 α3 + (1−ρ00)(α
−
3 + ν̄B33) (1−ρ00)ν̄B34

(1−ρ00)ν̄B41 (1−ρ00)ν̄B43 α4 + (1−ρ00)(α
−
4 + ν̄B44)


and right hand side

ν̄χ4ρ00
1t

1y

− 1
2

0
1
2

 + (1 + ρ00)
ν1t

1x1y

1

6


1

2C̄

0
1

2C̄

 .

5.3. Higher Order Discrete Artificial Boundary Conditions

We now have all the necessary elements to proceed to the evaluation of the terms inεη∗.
Let the matrixM introduced in Subsection 1.3 be expanded as

M = M00 + i η∗M01 + εM10 + εi η∗M11 + O(ε2) + O(η∗2).
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The term inεi η∗ in the corresponding development of its inverseN is given by

N11 = −N00M11N00 + N00M01N00M10N00 + N00M10N00M01N00,

the following term has to be added to the right-hand side in (3.2),

εi η∗
4∑

j =1

(ĝ0) j

4∑
i =1

[
(Ni j )11(ρi )008

i
00 + (Ni j )00(ρi )018

i
00

+ (Ni j )00(ρi )008
i
11 + (Ni j )00(ρi )108

i
11 + (Ni j )01(ρi )108

i
00

+ (Ni j )01(ρi )008
i
10 + (Ni j )10(ρi )008

i
11

] = εi η∗A11ĝ0,

and (3.3) becomes

d̂1 = (A00 + i η∗A01 + εA10 + εi η∗A11)ĝ0 + O(ε2) + O(η∗2). (5.2)

From relation (5.2), the expressions ofεd̂1, dn+1
1 (y), anddn+1

1, j are obtained by adding the
terms

εi η∗(A01 −A00A−1
10A11

)
ĝ0,(

A01 −A00A−1
10A11

)
1y

d

dy

(
gn

0 − gn−1
0

)
(y)

and (
A01 −A00A−1

10A11
)1

2

(
gn

0, j +1 − gn
0, j −1 − gn−1

0, j +1 + gn−1
0, j −1

)
to the right-hand sides of relations (3.13), (3.14), and (3.15), respectively.

Figure 9 compares the errors associated to the discrete artificial boundary conditions
of order (1, 1), the high order discrete artificial boundary conditions, and the continuous
artificial boundary conditions of order (1, 1) and we see that the high order discrete arti-
ficial boundary conditions have an intermediate position between the continuous artificial
boundary conditions of order (1, 1), with an almost identical behaviour fort ≤ 0.2, and the
discrete artificial boundary conditions of order (1, 1) that they reach fort ≥ 0.35.

6. CONCLUSION

A hierarchy of discrete artificial boundary conditions has been proposed for the com-
pressible Navier–Stokes equations linearized about a constant state. As for the continuous
approach, the method of derivation uses the Fourier and Laplace transforms together with
asymptotic expansions under the assumptions of low time frequencies and long space wave-
lengths.

Unlike the continuous artificial boundary conditions, the discrete artificial boundary
conditions are self-sufficient: their number is always equal to the number of unknowns.
Moreover, they constitute a good source of numerical boundary conditions in the case
where the continuous artificial boundary conditions need to be completed.

The discrete artificial boundary conditions have been implemented in 1D and 2D model
problems and they compare quite well with the continuous artificial boundary conditions.
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FIG. 9. Time-evolution of thel 2-norm of the error associated to the discrete artificial boundary conditions of
order (1, 1) (solid line), the high order discrete artificial boundary conditions (dashed line), and the continuous
artificial boundary conditions of order (1, 1) (dotted line).
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Moreover, they can be coupled to schemes having arbitrary stencils, since they are based
on the definition of the ficticious values of the discrete solution outside the computational
domain.

A higher order discrete artificial boundary condition has also been proposed which im-
proves the discrete artificial boundary conditions of order (1, 1) for the small times.

The discrete approach developed herein was based on a fully discrete scheme for the
solution outside the computational domain, namely the first order upwind scheme. One
very interesting point would be to consider a scheme semi-discrete in space, in order to
have access to other time integration schemes (Runge–Kutta schemes, implicit schemes).
For accuracy purposes, it would also be quite interesting to apply the method to higher order
space discretizations in order to obtain discrete artificial boundary conditions which could
be coupled to high-order interior schemes without degrading the overall accuracy.
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